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Overview

= Introduction: What we want to know?
— The photocathode: a complex heterogeneous sample system.
— Structure and chemical composition during growth.
— The surface composition and its chemistry.
— Changes during operation.
= XAFS
— What is NEXAFS & EXAFS?
— How does the experiment look like?
— Examples:
e doping of nano-particles
e Characterization of spintronics interfaces (GaAs-Fe interface)
= Time resolved Experiments
— QEXAFS & “ultrafast”
— The proposed system at the APS

=  Conclusion
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Introduction: What we want to know?
Changes during operation.

J-HE. Cartwright et al. / Thin Solid Films 518 (2010) 3422-3427
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Introduction: What we want to know.’

The surface composition and its chemistr}/.
e-J. Surf. Sci. Nanotech. Vol. 5 (2007) 80-88
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XAFS

What is X-ray Absorption?

Absorption is mostly treated in Two-Step-Model

(absorption/relaxation)

“Principle” difference: photo-electron in bonded
(NEXAFS) are non-bonded (EXAFS) state

NEXAFS probes electronic states — EXAFS next neighbors :

Good description can be found:

http://xafs.org/Tutorials?action=AttachFile&do=view&target=Newville_xas_fundamentals.pdf
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XAFS
How to Measure XAFS?

Transmission Experiment: B Relaxation process:
H H U -ra
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T
= Detection method: Transmission (reflection), fluorescence (high yield for energies
> 4KeV), electron yield/Auger (high yield for energies < 2KeV)

= Scanning of incidence energy

=  Emitted photon/electron has constant energy and is typical for atomic species (in
non resonant case)
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XAFS

The signal: NEXAFS & EXAFS " NEXAFS:
— Finger print method
20k ' ' ' ' ' ' i using reference samples

(local probe)
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XAFS
A closer look to the EXAFS range

X~-ray Absorption Fine-Structure
» = (k) depends:
photo-electron 2. (E - Eo) = Scatting strength of neighbor

'V\MAN\I =  Phase-shift during “reflection”

= |sstrongly reduced for “large R”
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XAFS

XANES _
= Exafsis alocal probe
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=  Fourier Transformation of x(k) provides
x-ray pair-distribution function (&(k) is
‘\'\ core-level Absorption reqUired.

Absorbing Atom Scattering Atom Probability
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XAFS
What you can learn by EXAFS?
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XAFS
What you can learn from XAFS:

= NEXAFS (element selective):
— Speciation
— Empty Density of States (DOS)
— Local symmetry of absorber atom
=  EXAFS (element selective):
— Pair-distribution function of next neighbors (~3A-5A)
— Thermal & static disorder of neighbors
— Interstitial or substitutions for dopents
— Differentiation between light and heavy neighbors (amplitude)
= Both techniques are powerful if :
— System has a high degree of disorder
— The grain size is below ~10nm
— Theory is available to create model structures
= |s typically combined with:
— PDF (x-ray scattering of high energetic photons) similar to powder diffraction
— XRD (X-ray diffraction)
— Electron diffraction & microscopy (TEM/AFM/STM)

Photocathodes for Photo-Injector Applications
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Examples:
Doping of nano particles: Zn,_ ,Co, O

m  Particle size about 2nm

=  Problem:
— Is Co substituting Zn?
— Is there a concentration when Co phase-segregates?
— Is surface composition identical to “bulk”?
— Is Co substitution creating a lattice relaxation?

= To solve the problem:

— XAFS measurement taken at:
e Co K-edge
e Zn K-edge

— XRD

— Analysis with
e Conventional Fourier-analysis
e Reverse Monte Carlo

" Publication: JOURNAL OF PHYSICAL CHEMISTRY C,114, 9207-9215, 2010.
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Examples:

Co K-edge
Doping of nano particles: Zn,_ Co, O
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Examples:

Doping of nano particles: Zn,_ Co, O

Zn K-edge
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Examples:

Doping of nano particles: Zn,_ Co, O
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Examples:
Doping of nano particles: Zn,_ Co, O
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Results:

= What was necessary:

= Results: ¢ e
— Quantitative description of pair-distribution function -

Measuring of multiple edges
Measuring under multiple conditions (concentration)
Analysis with conventional XAFS analysis and RMC analysis

1 1 1
15 2 25 3 35 4
RIA]

No segregation (bulk or surface) was detected
(NEXAFS & EXAFS)

Zn and Co have same valence state P

Photocathodes for Photo-Injector Applications
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Examples:
Effects of 5 mono layers of Fe on GaAs (Spintronics example)

= Single crystal, UHV in-situ experiment; single crystal GaAs and MBE growth of Fe
— (001) substrate orientation
— Ga-rich surface ~
— 4x6 surface reconstruction \J D O

24724

=  Problem:
— How is the surface reconstruction influenced?
— Is there an anisotropic in-plane strain?
— Island growth or layer growth?

= To solve the problem:
— XAFS at the Fe-Kedge BCCCet J D 0
— measurement taken at 2 different polarizations

= Publication: PHYSICAL REVIEW B 74, 165405, 2006.

Photocathodes for Photo-Injector Applications
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\ |
Examples:

Effects of 5 mono layers of Fe on GaAs (Spintronics example)
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Examples:

Effects of 5 mono layers of Fe on GaAs (Spintronics example)
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Examples:
Effects of 5 mono layers of Fe on GaAs (Spintronics example)

= What was necessary:
— Measuring of multiple polarizations and orientations
— Gracing incidence measurement
— Theory with predictions

= Results:
— Transition from island growth to film growth

— Epitaxial growth
— Measured distortion is smaller than predicted (if existing)

— Zn and Co have same valence state

Photocathodes for Photo-Injector Applications
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Time resolved Experiments
QEXAFS & “ultrafast”

= QEXAFS: Quick EXAFS

Lo
mocodary n!: =gl
— Time resolution: oo | ey T B |
100ms-s go-o'Moce anpdions votage |3
HY ' AD convoner §
Nm’::'o‘ rml'f-‘c —@ :

J. Synchrotron Rad. (2001). 8, 354-356

Polychromator

= DEXAFS: Dispersive EXAFS

— Time resolution:
lus-s

‘ Photocathodes for Photo-Injector Applications
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Time resolved Experiments
QEXAFS & “ultrafast”

= “ultrafast approach” or how to make a movie:

— Time resolution: 100ps-s Laser pulse

(ion, electron)

X-ray buches

= Using natural bunching of ring: Time

= Signal of every bunch will be stored independently (currently 6500 bunches
over 1ms)

= Final signal will be averaged over multiple excitation pulses

=  Maximum time-resolution depends on ring structure

=  Maximum record length depends on trigger-rep-rate and available electronics
=  Time-slices can be binned to result better statistics

Photocathodes for Photo-Injector Applications
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Time resolved Experiments
The proposed system at the APS

Photocathodes for Photo-Injector Applications
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Combined SAXS/WAXS/
XAFS approach

In-situ growth chamber is
in preparation

Scattering detection is
done with PILATUS 2M
(30Hz readout)

Spectroscopy detection
system integrated with
“ultrafast aproach”

Gracing incidence
technique
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Conclusion

= X-ray techniques can help to characterize:
— complex phase segregations during growth and use of PC’s
— And develop an atomistic model of the cathode-vacuum interface

= Combined X-ray techniques provide:

— Elemental, chemical, structural information on crystalline, poly-crystalline and nano-
materials.

— Questions of interface sciences can be addressed.

— Combination with theory provides powerful method to derive microscopic models of
complex heterogeneous systems

= Experimental facilities are under construction
— Combined studies will be possible at BNL and ANL
— Time resolution from 100ps to s possible
— This is a starting point, more efforts are essential

Photocathodes for Photo-Injector Applications
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Introduction: What we want to know?
The photocathode: a complex heterogeneous sample system.
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Typical “thickness” of active
area (fast cathodes):
10nm-100nm

Most “high efficiency”
cathodes are semiconductor
cathodes (llI-V, or bi- and
multi-alkali)

Functionality of
semiconductor cathodes
depends on band-structure of
substrate, doping profile,
segregation effects, and
surface composition
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Introduction: What we want to know?
Structure and chemical composition during growth.

JHE. Cartwright et al. / Thin Solid Films 518 (2010) 3422-3427
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Fic. 1. Schematic diagram illustrating fundamental growth processes con-
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Phys. Rev. B 59, 5178-5188 (1999)
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